$\mathcal{N \varepsilon w} \mathcal{Z}_{\varepsilon r 1 \varepsilon y} S_{\varepsilon m i-C o n d u c t o r ~} \mathcal{P}_{\text {roducts, }}$ Inc.

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922
(212) 227-6005

FAX: (1973) 376-8960
MJ10020
MJ10021

60 AMPERE NPR SILICON POWER DARLINGTON TRANSISTORS 200 AND 250 VOLTS 250 WATTS

TO-204AE (TO-3)
(-204E (TO-3)

- Operating Temperature Range -65 to $+200^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}$ Performance Specified for:

Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8{ }^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

(1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. N.I Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJ10020 MJ10021

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage (Table 1) $\left(I_{C}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	MJ10020 MJ10021	$\mathrm{V}_{\text {CEO }}$ (sus)	$\begin{aligned} & \hline 200 \\ & 250 \end{aligned}$		-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left.\left.\qquad \begin{array}{l} \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE}(\text { off })}=1.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated Value, } \mathrm{V}_{\mathrm{BE}}(\text { off })\right. \end{array}\right)=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right) \end{aligned}$		ICEV	-	-	$\begin{gathered} 0.25 \\ 5.0 \end{gathered}$	mAdc
Collector Cutoff Current $\left(V_{C E}=\right.$ Rated $\left.V_{C E V}, R_{B E}=50 \Omega, T_{C}=100^{\circ} \mathrm{C}\right)$		ICER	\cdots	-	5.0	mAdc
Emitter Cutoff Current $\left(V_{E B}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$		IEBO	-	-	175	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with base forward biased	$I_{\text {S } / b}$		See Figure 13	
Clamped Inductive SOA with Base Reverse Biased	RBSOA		See Figure 14	

ON CHARACTERISTICS (1)

DC Current Gain $\left(\mathrm{I}_{\mathrm{C}}=15 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	$\mathrm{h}_{\text {FE }}$	75	-	1000	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}\right) \\ & \left(\mathrm{IC}_{\mathrm{C}}=60 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=4.0 \mathrm{Adc}\right) \\ & \left(I_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{C E}$ (sat)	-	-	$\begin{aligned} & 2.2 \\ & 4.0 \\ & 2.4 \end{aligned}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}\right) \\ & \left(\mathrm{IC}_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{\text {BE (sat) }}$	-	-	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	Vdc
Diode Forward Voltage $\left({ }^{2}=30 \mathrm{Adc}\right)$	V_{f}	-	2.5	5.0	Vdc

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(V_{C B}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1.0 \mathrm{kHz}\right)$	C_{ob}	175	-	700	pF

SWITCHING CHARACTERISTICS

Resistive Load (Table 1)						
Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=175 \mathrm{Vdc}, \mathrm{I}=30 \mathrm{~A},\right. \\ \mathrm{I}_{\mathrm{B} 1}=\begin{array}{c} \text { Adc, } \mathrm{V}_{\mathrm{BE}}(\mathrm{off})=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{t}}=25 \mu \mathrm{~s} \\ \text { Duty Cycle } \leq 2.0 \%) . \end{array} \end{gathered}$	t_{d}	-	0.02	0.2	$\mu \mathrm{s}$
Rise Time		t_{r}	-	0.30	1.0	$\mu \mathrm{s}$
Storage Time		t_{s}	-	1.0	3.5	$\mu \mathrm{s}$
Fall Time		If_{f}	-	0.07	0.5	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1)						
Storage Time	$\begin{gathered} \mathrm{I}_{\mathrm{CM}}=30 \mathrm{~A}(\mathrm{pk}), \mathrm{V}_{\mathrm{CEM}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=1.2 \mathrm{~A}, \\ \left.\mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{gathered}$	t_{sV}	-	1.2	3.5	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.45	2.0	$\mu \mathrm{s}$
Storage Time	$\begin{gathered} \left(\mathrm{ICM}=30 \mathrm{~A}(\mathrm{pk}), \mathrm{V}_{\mathrm{CEM}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=1.2 \mathrm{~A},\right. \\ \left.\mathrm{V}_{\mathrm{BE}(\mathrm{off})}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{gathered}$	t_{sv}	-	0.75	-	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.25	-	$\mu \mathrm{s}$
Fall Time		tfi	-	0.15	-	$\mu \mathrm{s}$

(1) Pulse Test: PW $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

